Content is Observations, not formal research

Ask questions (even during the talk)

This will be the least technical talk of the day
(Some) Customers

FCA
FIAT CHRYSLER AUTOMOBILES

GENTHERM

DELPHI

GM

Cummins

Panasonic Automotive

NAVISTAR

HARMAN
HOW DID WE GET HERE?
Models in The 90s

- Mechanical “Math Models”

- (Electrical) System Models
 - Static Models – Teamwork, Hatley-Pirbhai, ...
 - Simulation Models without Deliverables

- Executable Models as Specifications
 - Designs used as requirements

Interesting the most valuable models at this time were often the environment
Development of Electrical Systems in the 90s

Technology

- Electrical Advances were Evolutionary
- Technologies are Isolated Systems
- Development Cycles were 6 years+
- Evaluation was almost always with Physical Properties

Business

- OEMs Spun off Internal Suppliers
- Internet is forcing faster customer expectation of technology
- Customers desire 3-4 year windows
- Beginning of the Economic drag of manufacturing business

Most profound was that the character of vehicles was starting to be the software!
Challenges of the Business

Algorithmic Complexity

Reduction of Development Time

Cross Product Reuse

(Lack of) Skilled Market Resources

The goal was to move faster, but more importantly to own Intellectual Property.
Simplifying the Challenge

This is the chart that funded investment in internalizing development!
Market Movement to Algorithm Modeling

Motivation:
- Own the Intellectual Property
- Correct in construction
- Longevity in Application
- Remove the Supplier – OEM Cycle
- Minimize the need for Software Engineers

Solution:
- Move to Model Driven Engineering
- Leverage Algorithm Engineers over Software Engineers
- Develop Internal Reuse Strategies
Success In Algorithm Modeling

From Models to Code Solutions had the same patterns
- Stable target environments (OS, MicroControllers)
- Specialized Code Generators for Targets (Size and Speed)
- Model Expressions Understandable by Users

Controls Systems
- Graphical Coding
- Commercial Code Generators

State Based Systems
- UML
- State Modeling Tools

90% of the code generation we observe is Simulink
Success reaffirms that Modeling is valuable when used as a first order artifact and has derivative value.
Algorithm Modeling has been the primary success because of...
• Access to technology
• Robustness in process application
• Distance from decision by engineer to application (Immediacy)

Attempts for Modeling and Analysis that have not seen wide spread adoption include...
• Architecture Analysis
• Timing Analysis
• Optimization

Clear issues in other techniques relative to source data and the concluding results. Formal/Informal and Precision/Accuracy
THE INDUSTRY TODAY
News Shaping the Industry

NHTSA Releases List of All Makes and Models Affected by Takata Air Bag Recalls

The NHTSA has released the full list of vehicles (by model year, make and model) affected by the Takata air bag recalls. Consumers can also use NHTSA’s VIN look-up tool to see if their vehicle matches one of the approximately 10 million vehicles from 12 auto manufacturers involved in the recall.

Toyota reaches $1.2B unintended acceleration settlement in criminal probe

REPORT TO BOARD OF DIRECTORS OF
GENERAL MOTORS COMPANY
REGARDING IGNITION SWITCH RECALLS

May 29, 2014

Anton R. Valukas
JENNER & BLOCK

The New York Times
As Volkswagen Pushed to Be No. 1, Ambitions Fueled a Scandal

Why so many issues with so great of impact?
Complexity is what is driving the issues, and culture is driving the inability to identify and respond.
PROCESS MODELS
Process Models

Motivations:

- Consistency in Practice
 - “What should I do?”
 - “What should someone do if someone leaves?”
- Communicating Expectations & Culture
- Measuring Performance to expectations

Business Objectives:

- OEMs -> Protect their investment and practices
- Tier 1s -> Demonstrate effective practices

Might be the most important model of the next decade if it is executable.
Industry Reference Model Examples

Each Reference Model has its own unique perspective and value proposition.
Usage of Process Models

Process Models
- Simple
- Custom

Process Must Be Tailored
- For an Organization
- For a Project

Process Must Be Evaluated
- For Coverage/Compliance
- For Status

Process Model Adoption can be correlated to the value to the organization and the enactments that enable engineers to understand and use rapidly.
COLLABORATION MODELS
Pace and content of collaboration has accelerated, but the methods haven’t.

Collaborative Workflows
- Issue
- Change
- Question

Collaborative Assets
- Requirements
- Designs
- Implementations

Methods and technologies are significantly behind the needs.
Workflow collaboration centers around exchange of communication

Content of Communication is simple

Complexity is in
- Security
- Alignment
- Volatility of Data and Schemas
- Mapping of State and Content

Simple data concepts but robust techniques and architectures must be applied
Patterns of Collaboration

Direct Synchronization

Indirect Synchronization

A layer of the issue with collaboration is that of security (or perceived security)
Asset Collaboration (AUTOSAR, ODX, etc.)

Automotive is moving to structured formats for exchange

Formats designed for serialization and delivery

Gaps in
- Collaboration/Iteration
- Security
- Perspectives/Slicing
- Variance

*Note: Requirements is a similar issue

Significant focus of the North American AUTOSAR User Group
PLANNED REUSE
Reuse & Configuration

Product Line Engineering is a dominant objective in the industry.

Needs are based on:
- Consistency
- IP Investment
- Fast to Market

Challenges
- Maturity of Organizations
- Build to Contract Culture
- Asset Management
Feature Modeling

Common method of expression of content and relationship

Challenges are
- Pervasive nature of the method
- Large investment in organization culture
- Expression of the asset binding
- Tool integration
Leveraging Feature Models

Value in feature modeling is in the leveraging of superset assets

From a single superset asset base generating multiple unique product bases

Observed significant more progress on the OEM side than the Tier 1 side.
Internet of Things is the simple integration of silos of information that can be used for a greater value than on its own.
Example: Cummins Connected Diagnostics

Connected Diagnostics YouTube Video
Summary of Impacts

Everything is a Model

Process Model Adoption
- Will Drive Culture Changes

Collaboration Success
- Will Accelerate Business
- Enable Validation Across Boundaries

Planned Reuse
- Will Push for Tooling Changes
- Will Drive to New Process Capability Patterns

Internet of Things
- Will Change our Assumptions on Design (nothing is static)

Tier 1 Staff Engineer “Hopes for a change in culture to assume open unless told otherwise”
FUTURE OF MODELS
Expected Victories

Executable Process
- Process at the Organization forefront, in the background of the developer

Cross Enterprise collaboration
- Of Workflow
- Of Assets

PLE as a Common Practice

Not including code generation since it is “Solved”
Expected Challenges

Tooling
- Client side to server side
- Tool integrations

Pervasive Data Models
- Data Warehouses, Linked Data, ...
- Consistency and Coherence

Field Robustness
- QoS field guarantees with field evolution of software
Thank you for your attention!