
Variability / Product
Families

Kacper Bąk

Currently: The MathWorks, Inc.

Previously: GSD Lab, University of Waterloo

1

Acknowledgments

slides based on tutorials by

Andrzej Wąsowski, IT University of Copenhagen

Michał Antkiewicz, University of Waterloo

Krzysztof Czarnecki, University of Waterloo

2

Software-intensive Products
Come in Many Variants

3

Domain Engineering

aka Product Line Engineering

aka Product Family Engineering

4

Application Engineering

Development with Reuse

Single Product

Development for Reuse

Product Family

Domain Engineering

5

Why Domain Engineering?

6

Why Domain Engineering?

…because

opportunistic reuse does not scale

7

Clone and Own

blue.cc

Create

8

Clone and Own

blue.cc

Create

Clone

blue.cc

9

Clone and Own

blue.cc

Create

Clone

blue.cc

green.cc

& Own

Change

10

Clone and Own

blue.cc

Create

green.cc

blue.cc

Bug found
independently

Clone

blue.cc

green.cc

& Own

Change

11

Clone and Own

blue.cc

Create

green.cc

blue.cc

Bug found
independently

blue.cc

green.cc

Independent
bug fixes

Clone

blue.cc

green.cc

& Own

Change

12

Clone and Own

blue.cc

Create

green.cc

blue.cc

Bug found
independently

blue.cc

green.cc

Independent
bug fixes

Clone

blue.cc

green.cc

& Own

Change

13

Duplicated Effort
😭

+ Easy, no special tooling required

+ Quickly available functionality

- No sharing (fixes & features)

- Maintain yourself (test, debug, change)

- Product specific code grows

- Platform code diminishes and degrades

14

Cloning as Opportunistic Reuse
Dubinsky et al., Exploratory Study of Cloning in Industrial SPLs, CSMR 2013

product

code

platform

code

build

system

product

code

product

code

build

system

build

system

Successful Reuse

Proactive
Planned

Managed
15

Domain vs Application Engineering
Pohl et al., Software Product Line Engineering, Springer Science, 2005

product
independent

product
specific

16

Solution
Space

Problem
Space

telematics
System

extra
Displaychannel

single dual

17

Mapping

code

features variation points

domain-specific
abstractions

implementation
oriented abstractions

Software Product Line

18

Domain
Engineering

Application
Engineering

Variability

Abstraction

Variability

Resolution

Assets with

Resolved

Variability

Variability

Realization

Problem
Space

Solution
Space

M

19

maps to

Product Line Architecture Overview
telematics
System

extra
Displaychannel

single dual

Variability Abstraction Variability Realization

platform

assets product

specific

assets

20

maps to

!extraDisplay

dual

Variability Resolution

Product Line Architecture Overview
telematics
System

extra
Displaychannel

single dual

Variability Abstraction

configures

Variability Realization

platform

assets product

specific

assets

Build System

Variability Realization

platform

assets product

specific

assets

21

maps to

!extraDisplay

dual

Variability Resolution

Product Line Architecture Overview
telematics
System

extra
Displaychannel

single dual

Variability Abstraction

configures

telematics
System

extra
Displaychannel

single dual

Variability Abstraction

Build System

22

Assets with
Resolved Variability

maps to

!extraDisplay

dual

Variability Resolution

configures

Product Line Architecture Overview
Variability Realization

platform

assets product

specific

assets

Implementation Technologies
• Feature models

• Domain Specific Languages

• none 
 

• Feature model configuration, constraints

• Domain specific model

• XML, JSON, custom text format, … 

• Code (with variability techniques)

• Code generators

• Model transformers

• Parts may use DSLs 

23

!extraDisplay

dual

Variability Resolution

telematics
System

extra
Displaychannel

single dual

Variability Abstraction

Variability Realization

platform

assets product

specific

assets

Spectrum of Variability Architectures
Stay as Close to the Left as Possible

Exploit Commonality
Manage Variability

para
mete

rs,

co
nfi

g fi
les

on
ly p

rod
uc

t

sp
ec

ific
 co

de

24

fra
mew

ork
s

dom
ain

-sp
ec

ific

lan
gu

ag
es

va
ria

bility
 m

od
els

platform configuration product construction

variability

Software Product Line

25

Domain
Engineering

Application
Engineering

Variability

Abstraction

Variability

Resolution

Assets with

Resolved

Variability

Variability

Realization

Problem
Space

Solution
Space

M

Example: Telematics System

26

27

Primary display (front)

Primary display (rear)

Extra display (front)

Extra display (rear)

ECU (front channel)

ECU (rear channel)

Feature Model

28

telematics
System

extra
Displaychannel

single dual cross tree constraint, e.g.,
dual ⇒ extraDisplay

mandatory feature

group constraint
(xor)

features form a
hierarchy

optional feature

single kind of relationship: subfeature
meaning: implication

Software Product Line

29

Domain
Engineering

Application
Engineering

Variability

Abstraction

Variability

Resolution

Assets with

Resolved

Variability

Variability

Realization

Problem
Space

Solution
Space

M

Feature Configuration

30

telematics
System

extra
Displaychannel

single dual cross tree constraint, e.g.,
dual ⇒ extraDisplay

{ telematicsSystem,

 channel, single }

31

{ telematicsSystem,

 channel, single }

{ telematicsSystem,

 channel, single,

 extraDisplay }

{ telematicsSystem,

 channel, dual,

 extraDisplay }

{ telematicsSystem,

 channel, dual }

Configuration Semantics of an FM
Set of Configurations

32

Feature Modeling and FODA

• FODA succeeds for its simplicity

• Probably best intro in Czarnecki’s Generative Programming (Ch. 4)

• 4700+ citations, never formally published

33

Feature Models vs Class Models
A Feature Model in Product Variant Master Notation (Hvam)

Haug et al., Creating a documentation system to support the development and maintenance of product configuration
systems, WSEAS 2007

Feature Models vs Class Models

34

Concepts Few and simple: feature, subfeature,
group, constraint

Many and complex: class,
generalization, composition,
association, redefinition, refinement,
property, multiplicity, package, data
type, primitive type, enumeration, …

Use Variation of user-relevant
characteristics of product variants

Concepts representing more detailed
aspects of products; product line
architectures

Semantics
Configuration - selections from
predefined choices within a fixed tree
structure

Instantiation - making new structures
that conform to predefined types, and
connecting them via links

Bąk et al., Clafer: Unifying Class and Feature Modeling, SOSYM 2014

How to Build Feature Models?
Bottom Up - Incremental Adoption

35

• Identify cloned code/functionality 

• Find the patches that describe differences 

• Diffs → variation points 

• Aggregate variation points into hierarchical features

Jepsen et al., Minimally Invasive Migration to Software Product Lines, SPLC 2007
Berger et al., A survey of variability modeling in industrial practice, VAMOS 2013

Variability Modeling in
the Wild

36

Healthy Wild Variability Model Club
ToyBox Project, 71 Features

37

Healthy Wild Variability Model Club
ToyBox Project, 71 Features

38

Berger et al., A Study of Variability Models and Languages in the Systems Software Domain, TSE 2013

The Linux Kernel has 6-12k features, depending on how you count.

Max depth: 8. Most leaves are at 4! Shallow

 ↓ this is the Linux Kernel model fit to the slide width ↓

KConfig & CDL
FM with Attributes, Defaults, Constraint Propagation, UI, …

39

KConfig & CDL
Textual Variability Models

40

Common Variability Language (CVL)
IBM et al., Proposal for CVL Revised Submission, 2012

41

Base Model
(not expressed in CVL)

Configurable Units Variability Interfaces

Variability Realization Variability Abstraction

Variation Points VSpecs Constraints

Resolutions

CVL Architecture for Linux Junkies

42

C Code

KBuild Files + CPP KConfig Files

IFDEFs Conf. Opts. Constraints

Y/N/M

Software Product Line

43

Domain
Engineering

Application
Engineering

Variability

Abstraction

Variability

Resolution

Assets with

Resolved

Variability

Variability

Realization

Problem
Space

Solution
Space

M

Software Product Line

44

UML Models

Calibrations

HW/SW Mapping

OS Generation

Hybrid Models

Software Product Line

45

Domain
Engineering

Application
Engineering

Variability

Abstraction

Variability

Resolution

Assets with

Resolved

Variability

Variability

Realization

Problem
Space

Solution
Space

M

Software Product Line

46

telematics
System

extra
Displaychannel

single dual

Features

M

M

M

M

M

UML Models

Calibrations

HW/SW Mapping

OS Generation

Hybrid Models

Software Product Line

47

Domain
Engineering

Application
Engineering

Variability

Abstraction

Variability

Resolution

Assets with

Resolved

Variability

Variability

Realization

Problem
Space

Solution
Space

M

Is Clone and Own Always Bad?

48

Is Clone and Own Always Bad?

49

not if the cost of cloning is less

than the cost of an SPL 😉

50

Exercise
• Example Domain: Traffic Lights

• Feature-oriented commonality/variability analysis

• Domain concept analysis

• Application configuration

• Apply Example-Driven Modeling

• Use Clafer & Web Tools

• Tutorial style

• Hands-on

• Small exercises

51

Interactive Tutorial
http://t3-necsis.cs.uwaterloo.ca:8098/

Use Chrome or Firefox

Indent code with spaces, not tabs

52

http://t3-necsis.cs.uwaterloo.ca:8098/

