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Software-intensive Products 
Come in Many Variants
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Domain Engineering

aka Product Line Engineering 

aka Product Family Engineering
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Why Domain Engineering?

6



Why Domain Engineering?

…because 

opportunistic reuse does not scale
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Duplicated Effort 
😭



+ Easy, no special tooling required


+ Quickly available functionality


- No sharing (fixes & features)


- Maintain yourself (test, debug, change)


- Product specific code grows


- Platform code diminishes and degrades
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Cloning as Opportunistic Reuse 
Dubinsky et al., Exploratory Study of Cloning in Industrial SPLs, CSMR 2013
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Successful Reuse
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15



Domain vs Application Engineering 
Pohl et al., Software Product Line Engineering, Springer Science, 2005

product 
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product 
specific

16



Solution 
Space

Problem 
Space

telematics
System

extra
Displaychannel

single dual

17

Mapping

code

features variation points

domain-specific 
abstractions

implementation 
oriented abstractions



Software Product Line
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Implementation Technologies
• Feature models 

• Domain Specific Languages


• none 
 

• Feature model configuration, constraints 

• Domain specific model


• XML, JSON, custom text format, … 

• Code (with variability techniques)


• Code generators


• Model transformers


• Parts may use DSLs 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Spectrum of Variability Architectures 
Stay as Close to the Left as Possible 

Exploit Commonality 
Manage Variability

para
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Software Product Line
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Example: Telematics System
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Primary display (front)

Primary display (rear)

Extra display (front)

Extra display (rear)

ECU (front channel)

ECU (rear channel)



Feature Model
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telematics
System

extra
Displaychannel

single dual cross tree constraint, e.g., 
dual ⇒ extraDisplay

mandatory feature

group constraint 
(xor)

features form a 
hierarchy

optional feature

single kind of relationship: subfeature 
meaning: implication



Software Product Line
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Feature Configuration
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telematics
System

extra
Displaychannel

single dual cross tree constraint, e.g., 
dual ⇒ extraDisplay

{ telematicsSystem,

  channel, single }
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{ telematicsSystem,

  channel, single }

{ telematicsSystem,

  channel, single,

  extraDisplay } 

{ telematicsSystem,

  channel, dual,

  extraDisplay } 

{ telematicsSystem,

  channel, dual } 

Configuration Semantics of an FM 
Set of Configurations
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Feature Modeling and FODA 

• FODA succeeds for its simplicity


• Probably best intro in Czarnecki’s Generative Programming (Ch. 4)


• 4700+ citations, never formally published
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Feature Models vs Class Models 
A Feature Model in Product Variant Master Notation (Hvam)

Haug et al., Creating a documentation system to support the development and maintenance of product configuration 
systems, WSEAS 2007



Feature Models vs Class Models 
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Concepts Few and simple: feature, subfeature, 
group, constraint

Many and complex: class, 
generalization, composition, 
association, redefinition, refinement, 
property, multiplicity, package, data 
type, primitive type, enumeration, …

Use Variation of user-relevant 
characteristics of product variants

Concepts representing more detailed 
aspects of products; product line 
architectures

Semantics
Configuration - selections from 
predefined choices within a fixed tree 
structure

Instantiation - making new structures 
that conform to predefined types, and 
connecting them via links

Bąk et al., Clafer: Unifying Class and Feature Modeling, SOSYM 2014



How to Build Feature Models? 
Bottom Up - Incremental Adoption
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• Identify cloned code/functionality 

• Find the patches that describe differences 

• Diffs → variation points 

• Aggregate variation points into hierarchical features

Jepsen et al., Minimally Invasive Migration to Software Product Lines, SPLC 2007 
Berger et al., A survey of variability modeling in industrial practice, VAMOS 2013



Variability Modeling in 
the Wild

36



Healthy Wild Variability Model Club 
ToyBox Project, 71 Features
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Healthy Wild Variability Model Club 
ToyBox Project, 71 Features
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Berger et al., A Study of Variability Models and Languages in the Systems Software Domain, TSE 2013

The Linux Kernel has 6-12k features, depending on how you count.


Max depth: 8. Most leaves are at 4! Shallow 

 ↓ this is the Linux Kernel model fit to the slide width ↓



KConfig & CDL 
FM with Attributes, Defaults, Constraint Propagation, UI, …
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KConfig & CDL 
Textual Variability Models
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Common Variability Language (CVL) 
IBM et al., Proposal for CVL Revised Submission, 2012
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Base Model 
(not expressed in CVL)
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Variability Realization Variability Abstraction
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Resolutions



CVL Architecture for Linux Junkies 
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C Code

KBuild Files + CPP KConfig Files

IFDEFs Conf. Opts. Constraints

Y/N/M



Software Product Line
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Software Product Line
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Software Product Line
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Software Product Line
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Software Product Line
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Is Clone and Own Always Bad?
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Is Clone and Own Always Bad?
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not if the cost of cloning is less 

than the cost of an SPL 😉
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Exercise
• Example Domain: Traffic Lights 

• Feature-oriented commonality/variability analysis


• Domain concept analysis


• Application configuration


• Apply Example-Driven Modeling


• Use Clafer & Web Tools


• Tutorial style


• Hands-on


• Small exercises
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Interactive Tutorial
http://t3-necsis.cs.uwaterloo.ca:8098/


Use Chrome or Firefox


Indent code with spaces, not tabs
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http://t3-necsis.cs.uwaterloo.ca:8098/

